Prediction of the elastic modulus of the trabecular bone based on X-ray computed tomography

نویسندگان

  • Kamel Madi
  • G. Aufort
  • A. Gasser
  • Samuel Forest
  • K. Madi
چکیده

This work aims to estimate the apparent Young’s modulus of real human trabecular bones using a numerical micro-macro approach. Cylindrical specimens of trabecular bone were extracted from human femur heads, cleaned and scanned using a SkyScan-1072 micro-computed tomography system. 3D volumetric tetrahedral grids were generated from the exploitation of the reconstructed images using original meshing techniques. Numerical compressive tests were simulated, assuming isotropic tissue Young’s modulus for all elements. The large size of the volumes implies grids with a high number of nodes, which required the use of a large number of parallel processors in order to perform the finite element calculations. Numerical Young’s moduli varied between 1300 MPa and 1600 MPa, with a good agreement with

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, mCT, and DXA

Early detection of fracture risk is important for initiating treatment and improving outcomes from both physiologic and pathologic causes of bone loss. While bone mineral density (a quantity measure) has traditionally been used for this purpose, alternative structural imaging parameters (quality measures) are proposed to better predict bone’s true mechanical properties. To further elucidate thi...

متن کامل

Efficacy of Dual Energy X-ray Absorptiometry for Evaluation of Biomechanical Properties: Bone Mineral Density and Actual Bone Strength

INTRODUCTION Bone mineral density (BMD) is an important index in diagnosis of osteoporosis and other metabolic bone diseases, prediction of fractures, and monitoring treatment. This study was to find a more feasible technique for prediction of osteoporotic fracture between dual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) and to reveal the actual change of bone s...

متن کامل

Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, microCT, and DXA.

Early detection of fracture risk is important for initiating treatment and improving outcomes from both physiologic and pathologic causes of bone loss. While bone mineral density (a quantity measure) has traditionally been used for this purpose, alternative structural imaging parameters (quality measures) are proposed to better predict bone's true mechanical properties. To further elucidate thi...

متن کامل

Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models

BACKGROUND Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) me...

متن کامل

Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

Introduction: Because of the importance of vertebral compressive fracture (VCF) role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD) determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite eleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016